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TRAJECTORY CONTROL FOR A QUADCOPTER
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Abstract: This article presents a mathematical framework for modeling the spatial motion of a
quadcopter. The model incorporates a proportional-derivative (PD) controller to maintain the quadcopter’s attitude
and make it follow an initially assigned path. A system of first-order ordinary differential equations (ODEs) with
constant coefficients describes both linear and angular momenta conservation. To solve these equations, the
explicit Dormand-Prince method of order 4 with adaptive time stepping, implemented via the ode45 function in
GNU Octave, is employed. The algorithm is well-suited for non-stiff ODE systems. The study further analyzes the
performance of the PD controller, presenting the simulation results graphically and discussing the effectiveness of
the control strategy in stabilizing the quadcopter’s motion.
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Pe3rome: Tazu cmamus npedcmassi MamemMamuyecku MoOes Ha npocmpaHCmeeHomo O8UXeHUe Ha
keadpokonmep. Modenbm eknousa nponopyuoHanHo-OugepeHyupaw, (PD) peaynamop, kolmo noddnpxa
opueHmauyusima Ha keadpokonmepa 6 MpocmpaHcmeomo U 20 3acmaes Oa credsa MbpeoHaYasHo 3adadeH
nmbm. Cucmema om obukHogeHU OughepeHyuanHu ypasHeHust (OY) om nbpsu ped ¢ MOCMOSIHHU KoeghuyueHmu
onucea CbxpaHeHUuemo Ha Koiu4ecmeomo Ha O08UXeHUe U KUHemu4Husi MoMeHm. 3a pewasaHemo Ha mesu
ypasHeHus1 ce usrnosidea siseH memod Ha [JopmaHO-lIpuHc om ped 4 ¢ adanmueHa cmblika Ha UHMezpupaHe,
peanusupaH 4pe3 ¢pyHkyusima ode45 ¢ GNU Octave. AneopumbmMbm e nodxodsw; 3a He-mebpdu cucmemu
Oo4y. UscnedsaHemo AonmbrHUMENIHO aHanusupa npousgodumeniHocmma Ha peaynamopa, npedcmassiku
pesynmamume om cuMmynayusima epaguyHo U obcbxoaliku eghekmusHocmma Ha cmpamezusma 3a
ynpasneHue fnpu cmabunu3upaHe Ha 08UXXeHUemo Ha keadpokonmepa.

Introduction

Quadcopter trajectory control requires guiding the quadcopter along a desired path or
trajectory with precision and stability. The control process includes various control strategies and
algorithms designed to manage the quadcopter's position, velocity, and orientation over time. For
example, PID (Proportional-Integral-Derivative) control is a widely used feedback control strategy that
can be effectively applied to a quadcopter's trajectory tracking.

The quadcopter’s flight involves controlling its position (x, y, z) and orientation (roll, pitch, yaw)
in space incessantly. When following a predefined trajectory, the control system minimizes the error
between desired and actual position and orientation of the quadcopter. In the current project, two
proportional-derivative controllers are implemented: one controls the orientation, while the other
controls the position of the aerial vehicle. A proportional-derivative controller for quadcopter attitude
has already been theoretically developed by Luukkonen in the monograph [1]. Regrettably, there is no
source code available for public access. The current project sole purpose is to develop a source code
in GNU Octave to examine the controller capabilities and propose improvements if feasible.
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Materials and Methods

The body frame of reference (fixed to the quadcopter) provides a way to describe position,
orientation, and motion of points or features relative to the body itself, rather than a fixed external
point. In the current study case, the reference frame origin is placed at the quadcopter mass center.

The axes are aligned with the quadcopter structure depending on the flight configuration: either “x” or

X" is solely considered.

“+,” as shown in Fig. 1. In the current study, the flight configuration

Fig. 1. Inertial and body reference frames, flight configuration “x”, a simplified design [2]

Based on the symbolic conventions typically adopted in quadcopter motion analysis (as
illustrated in Fig. 1), the state vector in the body reference frame is usually expressed as

™) Iv o =l v w p g

where v = [u, v, w]T are linear velocities, w = [p, q, r]" are angular rates. The first-order system of
ordinary differential equations describing the quadcopter’s motion in body reference frame reveals
conservation of both linear and angular momentum of the mechanical system as follows:

mly; 0, ox(mv)| |f
0,, I ox(lo)| |t
where Is3 is a 3 by 3 identity matrix, 033 is a 3 by 3 zero matrix, m = const stands for the quadcopter

mass, f and T denote externally applied forces and torques respectively. It is admissible to simplify the
inertia tensor | further due to symmetry

v
()

@

I. 0 0
3) I=j0 1, 0
0 0 I

The inverse of a diagonal matrix might be found after replacing the main diagonal elements with their
reciprocals. As regards vector [[wx(mv)]; [wx(lw)]]7, it might be alternatively computed by multiplying
Coriolis centripetal matrix and the state vector as follows:

ox(mv)| [[me]x,, 0,, v
) = .
ox(Io) 0,, [-Io] x| [lo
where symbol [[x33 denotes a skew symmetric matrix, for example
0 -r ¢ 0 -Ir ILg
(5) [mo]x,;=m-|r 0 -p|; [-To]x,,=-1-|Ir 0 —I.p
4 p 0 ~l,q I.p 0
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Finally, the system first order ordinary differential equations with constant coefficients
describing the quadcopter motion in body frame of reference assumes the conclusive form
ml,; 05, [m(o]xs,3 0,

-1 f
03,3 I 03,3 [—I(D] X33

T
The vectorized form above is suitable for GNU Octave to perform calculations quickly.

Beni¢ at al., [3] suggest using a hybrid coordinate system to solve the aforementioned
governing equations. Specifically, the conservation of linear momentum is described in inertial frame,
while the conservation of angular momentum is defined in body frame of reference. In this setup, the
centripetal force wx(mv) becomes zero, which also makes the top-left 3x3 part of the Coriolis matrix
zero. External forces and torques [f, 1] acting on the quadcopter need to be transformed accordingly.
In order to do this, the following rotation matrix might be used (assuming a ZYX rotation sequence) to
convert between the body and inertial frames.

¢,c, C,S,8,-S,C, C,S,C,+S,S,
) R=|S,C, S,S,5,+C,C, S,S,C,~C,S,
-, G,S, C,C,

where Sx = sin(x) and Cx = cos(x). The transformation matrix R is orthogonal, hence R~' = RT.
Alternatively, the rotation matrix could be derived using quaternions. Given a normalized axis
a and a rotation angle 6, the corresponding quaternion components are

(8) q,=c0s(0/2) q,=a,sin(6/2) q,=a,sin(6/2) q, =a sin(6/2)

The formula above is successively applied to Cartesian components of the rotation axis, namely
[ax,0,0], [0,ay,0], [0,0,az], and corresponding Euler angles [¢,0,0], [0,8,0], [0,0,y], following an initially
assigned sequence, for example XYZ. In this way, three quaternions are obtained, i.e. g1, g2, and q3
which are subsequently multiplied.

Quaternions are frequently split into a scalar term s and a vector term v as suggested for
example in paper [4]:

v A
= — L]

(6)

[0 o

9) q:[s V] seR v=ai+bj+ck
Using the notation above, the quaternion product is computed using the formula
(10) 949> Z(Sls2 —V1V2)+(S1V2 +5,V, +V, ><V2)

Then, based on Kuipers, [5], the transformation matrix (from body to inertial frame of reference) for
any rotation sequence is derived from the product [qw,gx,qy,qz] = (Q192)q3 as follows

2(q+q2)-1 2(q.9,-9.9.) 2(q.9.+4.9,)
(11) R=(2(q.9,+q,9.) 2(qi+4})-1 2(4,9.-9.9.)

2(q,9.-9,9,) 2(q,9.+4.9,) 2(q.+4’)-1
Externally applied force due to motor spinning written in body frame of reference is, [1]

0
(12) T=| 0

4
K o
i=l1
Externally applied force due to quadcopter weight written in body frame of reference is, [1]
0

(13) g=R'| 0

mg
where g = 9.81 m/s? is the Earth gravitational acceleration. The total external force vector applied to
the quadcopter in body frame of reference is following sum

(14) f=T+g
Externally applied torque due to motor spinning written in body frame of reference depends
upon the quadcopter flight configuration. Two distinct forms are following:
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e Flight configuration “+”

(
(15) E = |lk(-0] + o} )

¢ Flight configuration “x”

(16) E= lksin(

where kK is lift constant, b is drag constant, | is distance between quadcopter mass center and motor
axis. Externally applied torque due to gyroscopic effect written in body frame of reference is, [3]

0
4 .
(17) o=—| @x|0 1> (-1) o,
1 i=1

where Ir is the propeller moment of inertia. The total external torque vector applied to the quadcopter
in body frame of reference is following sum
(18) T=E+o0

Euler angles time rate of change (inertial frame of reference) is related to body frame angular
rates according to following formulae, [6]:

I R [
(19) q|=[0 C, G,
rl o =S, GGl
o 11 SL Gl |lp
(20) o|=lo ¢, =S, |lq
y| [0 S,/C, C,/C,|r

where Sx = sin(x), Cx = cos(x), and Tx = tan(x). Note singularity if 8 = £11/2 rad.

Linear acceleration in direction of z axis is affected by thrust T only (altitude controller) whilst
angular accelerations of Euler angles roll ¢, pitch 8, and yaw y are affected by torques 19, 16, and Ty
respectively (attitude controller). Luukkonen, [1] suggests following proportional — derivative controller
governing thrust and torques in hybrid reference frame:

T=[g+K.,(z,-2)+K,,(z,~2)] m

C,C,
21) 7, = K,pu (0 =0)+K,, (2. -0) |1
7, =|K,u(6,-6)+K,,(0,-0)]|1,

7, =[ K, (W ~v)+K, (v, ~v)]L
The subscript d denotes “desired” state and Cx = cos(x). Motor angular velocities are computed from
eq. (12), eq. (15), and eq. (16) according to adopted flight configuration. The “Symbolic” package
available in GNU Octave was used to compute the required angular velocities with regard to thrust
and torque vectors. Controller coefficients Kid and Kip (i = @, 0, y) are borrowed from monograph [1],
so are quadcopter overall dimensions and mass characteristics. Obtained results are following:
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e Flight configuration “+”
_ Ibl-2bt,—klz, , Tbl—-2br,+kiz,

2

o W,
(22) 4bkl 4bkl
, TIbl+2br,—klr, , Tbl+2br,+kiz,
a)3 = [0) A =
4bkl 4bkl

¢ Flight configuration “x

Tblsin(;jﬂnw—bre—klsin(;jrw 2 Tblsin(j)—brw—brg+klsin(erw

2

W = W, =
4bklsin(7zj 4bkzsin(”j
4 4
(23)

Thisin| = |-br +br, —kisin| = |7 Thisin| Z |+br +br, +kisin| = |z
4 4 0 4 4 4 [ 4 4 74

4bkl sin ”) 4bklsin(ﬂj

4 4

PD controller coefficients for positioning within XY plane are derived through heuristics.

Results

Figures below present the quadcopter moving along initially assigned square and staggered
paths (upper left), motor revolutions (upper right), roll angle (lower left), and pitch angle (lower right).
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Fig. 2. The quadcopter following a square trajectory at altitude H = 10 m, yaw angle y =0
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Fig. 3. The quadcopter following a staggered trajectory at altitude H = 10 m, yaw angle gy = 0

Discussion

Integral additive fixes the controller output by adding up all the past errors over time. It helps
eliminate steady-state error caused by constant biases or disturbances. If the actuator reaches its
maximum limit, it can lead to integral windup, which causes overshoot and slows down the response.
To prevent this, methods like conditional integration, back-calculation, and limiting the integral term
are commonly used.

The Ziegler-Nichols method, [7] is a widely used approach for tuning PID controllers. It is
straightforward and quick, but it can sometimes result in aggressive control, overshoot, or instability.
Nevertheless, it is a good starting point for most applications including present research.

Software used to develop current research is GNU Octave, [8] with free license. The project
source code might be downloaded from github.com [9].
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